Well posedness of balance laws with boundary

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Well Posedness of a System of Balance Laws with L

Uniqueness and continuous dependence of solutions of (2) can thus be derived from the well-posedness of the Cauchy problem for (3). We remark that the genuine nonlinearity of (1) implies that the total variation of u(t0, ·) is locally bounded, for each t0 > 0. Hence the well posedness of the Cauchy problem (3) with initial data x(t0) = x0 follows from [2]. It is worth noting that in [3] the wel...

متن کامل

On the well-posedness of entropy solutions to conservation laws with a zero-flux boundary condition

We study a zero-flux type initial-boundary value problem for scalar conservation laws with a genuinely nonlinear flux. We suggest a notion of entropy solution for this problem and prove its well-posedness. The asymptotic behavior of entropy solutions is also discussed.

متن کامل

Well-Posedness of Scalar Conservation Laws with Singular Sources

We consider scalar conservation laws with nonlinear singular sources with a concentration effect at the origin. We assume that the flux A is not degenerated and we study whether it is possible to define a well-posed limit problem. We prove that when A is strictly monotonic then the limit problem is well-defined and has a unique solution. The definition of this limit problem involves a layer whi...

متن کامل

Well-posedness of a singular balance law

We define entropy weak solutions and establish well-posedness for the Cauchy problem for the formal equation ∂tu(t, x) + ∂x u 2 (t, x) = −λu(t, x) δ0(x), which can be seen as two Burgers equations coupled in a non-conservative way through the interface located at x = 0. This problem appears as an important auxiliary step in the theoretical and numerical study of the one-dimensional particle-in-...

متن کامل

Well-posedness for Multidimensional Scalar Conservation Laws with Discontinuous Flux

We obtain a well-posedness result of an entropy solution to a multidimensional scalar conservation law with discontinuous (quasi-homogeneous) flux satisfying crossing conditions, but with no genuine nonlinearity assumptions. The proof is based on the kinetic formulation of the equation under consideration and it does not involve any transformation of the original equation or existence of strong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2005

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.03.008